'Gold-Standard' data for wind energy comes from this site: Renewables UK The 'Onshore' + 'Offshore' Capacity is 12,119 MW. From the 29,534,391 MWh of 'Energy Produced', the average generational power works out at 3,369 MW, giving a Capacity Factor of 27.8%.
Page 16 of this site: State of the Industry Report 2014 - Deployment states: "...A snapshot of the UK wind industry taken on 30 June 2014 is shown in Table 1...". Page 15 shows 'Wind Energy Performance Totals' - 'UK-wide Operating' as 11,183 MW.
It is very reasonable to apply the 27.8% Capacity Factor to this 'Total' to give generational power of 3,109 MW, working out at 27,252,389 MWh (27.252 TWh) of 'Energy Produced'.
From this: Renewables UK there are a total of 6,036 Onshore and Offshore turbines, meaning each one has a 2 MW capacity to give the 12,119 MW figure. So, the 30 June 11,183 MW means 5,591 x 2 MW turbines.
5,591 wind turbines generate 3,109 MW - so -
each one is generating 556.07 kW
That's enough to boil 186 Kettles!
This comment has been removed by the author.
ReplyDeleteWe need to use less energy. We can do so. Your assumptions in the header are wrong.
ReplyDeleteYes, your right. I calculated that figure quite a few years ago when the mantra was ¼ of the worlds population uses ¾ of the energy.
ReplyDeleteData required for a recalculation is taken from this website: http://www.economicshelp.org/blog/5988/economics/list-of-countries-energy-use-per-capita/
In 2012, with the population at 7 billion, World Average per capita (69) = 1790.1 kgoe; France (27) = 3958.8; Germany (29) = 3889.1; UK (41) = 3183.3
In 2050, when population will be 10 billion, if we assume the whole world aspires to reach the energy usage level of a typically poor (or careful) European country like the UK, the increase in energy required is:
(10 x 3183.3) ÷ (7 x 1790.1) = 2.5 x current usage.
I shall change the heading immediately.